MTCA.4 Digitizer for RF
(and other applications)

Dr. Matthias Kirsch
Where do we come from?

- SIS3302 100 MS/s 16-bit 8 channel VME digitizer
- Germanium and other detector readout applications
- at tiny thresholds VME cycles in parallel to acquisition may result in triggers
- ~ 100 MByte/s readout
- fixed front panel input
Where do we want to go?

- serial symmetric readout
- high throughput readout
- hot swap
- timing distribution over backplane
- high speed point to point links to adjacent slots and controller/concentrator
- use one fairly complex ADC/Digitizer design with application specific input cards
Approach
MTCA.4 Digitizer with RTM’s
SIS8300 Digitizer Properties

- MTCA.4
- 4 lane PCI Express → 640 MB/s readout
- 10 channels 125 MS/s 16-bit ADC
- 10 MS/s to 125 MS/s per channel
- AC and DC input stage
- two 250 MS/s 16-bit DACs for fast feedback implementation
- high precision, flexible clock distribution logic
- Internal, front panel, RTM and backplane clock sources
- Programmable delay of twin ADC groups
- Gigabit Link Port implementation to backplane
- Double SFP cage for high speed system interconnects
- Virtex V FPGA
- up to 32 MSample Memory per channel
- additional point to point links over backplane
- In field firmware upgrade
SIS8300 V2
SIS8300 Virtex 5 Options

<table>
<thead>
<tr>
<th>FPGA</th>
<th>DDR2 Memory</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>XC5VLX50T-3FGG1136C</td>
<td>4 x 1 GBit</td>
<td>Default</td>
</tr>
<tr>
<td>XC5VSX50T-3FGG1136C</td>
<td>4 x 2 GBit</td>
<td>More DSP slices</td>
</tr>
<tr>
<td>XC5VLX110T-3FGG1136C</td>
<td>5 x 2 GBit</td>
<td>More I/Os</td>
</tr>
</tbody>
</table>
Modularity of Firmware

... -- Module Name: sis8300_top - Behavioral ...

entity sis8300_top is
genric(
 RESERVED_REGISTERS_FEEDBACK_EN : integer := 0;
 TRIGGER_BLOCK_EN : integer := 1;
 RINGBUFFER_DELAY_EN : integer := 1;
 SAMPLE_ADC_TWO_CH_BLOCK_EN : integer := 0;
 DUAL_OPTICAL_INTERFACE_EN : integer := 1;
 DUAL_PORT12_13_INTERFACE_EN : integer := 0;
 DUAL_PORT14_15_INTERFACE_EN : integer := 0;
);

...
MMC (Module Management Controller) Implementation in ATMEGA128

Struck in house development

RTM implementation in close co-operation with DESY and N.A.T
ongoing Vadatech MCH debugging

ATmega1281-16MU
Software for Generic FW

- LINUX driver
- 320 MByte/s to user space (farther optimization option)
- ROOT based ready to run GUI
- Windows Beta driver
SIS8300 Generic/LINUX Root
DESY APD Stretcher RTM

Dual channel signal stretcher

Petter Göttlicher, Chris Youngman
Interleaved Sampling
50 pC resolution target
Frank Schmidt-Föhre, Bastian Lorbeer
SIS8900 Single Ended RTM

10 cards in stuffing
RTM Clocks on Front Panel
Digital I/O to/from FPGA
DESY DWC8300
Downconverter RTM

1.3 GHz,...,4 GHz
Frank Ludwig
LLRF “Cluster”
DWC8300/SIS8300

- 10-channel Down-Converter
- Frontend Mixers
 - 10 Channels
- Power supply chain

- Digitizer, Partial Vector Sum
- 10 channel ADCs (125 MspS, 16 Bits)
 - AC, DC Coupled

- 10 channel field detection (1.3 GHz, 3.0 GHz, 3.9 GHz)
- FPGA partial cavity vector sum
- Low latency links via uTCA-backplane
Klystron Driver/LLRF Controller

- Klystron Driver
 - 2 channel vector modulator (108MHz, 216MHz, 1.3GHz...3.9GHz)
 - 16-bit DAC

- LLRF Controller
 - LLRF Controller, 6 Fiber-Ports, 2 GB-Links
 - FPGA(V5), DSP

Frank Ludwig, DESY
Flash Injector Rack Installation

- uTCA Prototype Front view
- uTCA Prototype Rear view
Lab Test

- Short-term stability in a uTCA crate (laboratory):

 - DPP8300 RTIO, SIS8300 V2, MCH, CPU, uTCA crate
 - DIO 1 GHz (PSI), 1.2 GHz LO, 2 MHz IF, 31 MHz SR
 - LO-Generation Module (10°, FL, PM version)
 - Offline Matlab non-iq analysis (N-SK), 1 MHz Bandwidth

 Power-Entry-Modules: < 110dB spurious free
 Poor Power Supplies: < 80dB SFDR
 VS-Scaling: < 120dB SFDR

 Raw-Data IF Spectrum
 (no RF-signal)

 Single cavity resolution improved by a factor of 5 to dA/A=2.8E-5.
 Signal integrity in uTCA crate achieved Eval board performance.

 (using a Power-Entry-Module, Ericsson BMR911483)
FLASH Operation

- FLASH operation:

- On-crest energy stability:

SR-camera resolution limit

Energy stability dE/E=0.5E-4.
Summary I

- SIS8300/DWC8300 MTCA.4 Digitizer-Downconverter combination meets XFEL LLRF specification
- BPM and APD stretcher RTMs
Summary II

- SIS8900 single ended generic RTM

To do:
- Port SIS3302 VME digitizer Ge/Gamma firmware to SIS8300/8900 for 1:1 trigger/noise comparison

Deployment into other applications
- Positioning Interferometer readout
- Neutron scattering/delay line application
μTCA/MTCA.4 Ecosystem

- good feedback during ICALEPCS
- user base increasing
- availability of standard hardware increasing

One will want to keep in mind that a learning and introduction curve was present in other standards -like VME- as well
Acknowledgements

The SIS8300 was developed in co-operation with DESY under ZIM Förderkennzeichen 2460101MS9

We’d like to extend our special thanks to Kay Rehlich from DESY for the good atmosphere and the assistance throughout the development and Frank Ludwig from DESY for his input and continued support for improvements on the analog side in the V1 to V2 revision transition and beyond.
Questions/Discussion